C.Q.F.D.
Éditeur
Flammarion
Date de publication
Collection
Sciences
Langue
français
Langue d'origine
français
Fiches UNIMARC
S'identifier

C.Q.F.D.

Flammarion

Sciences

AideEAN13 : 9782081507296
  • Fichier PDF, avec DRM Adobe
    Impression

    Impossible

    Copier/Coller

    Impossible

    Partage

    6 appareils

    Lecture audio

    Impossible

15.99

Autre version disponible

Les mathématiques semblent le champ le plus solide du savoir scientifique : «
C’est prouvé par a + b. » À cette certitude correspondent pourtant non pas
une, mais d’innombrables façons de démontrer – on compte par exemple plus de
300 preuves du théorème de Pythagore : par l’absurde, par contre-exemple, par
récurrence, etc. Une redondance d’autant plus troublante que certaines sont
jugées plus solides que d’autres… Qu’est-ce que prouver et comment s’y prend-
on ? Comment lever les paradoxes de l’infini ? Pourquoi faut-il des axiomes ?
Quel crédit accorder à un théorème établi par ordinateur ? Dans cet essai, Yan
Pradeau lève le voile sur une activité essentielle des mathématiciens. Une
fois n’est pas coutume, il détaille non leurs résultats, mais les chemins qui
y mènent. Quand on sait depuis Gödel que tout ce qui est vrai n’est pas
forcément prouvable, on mesure l’utilité de cet ouvrage !

S'identifier pour envoyer des commentaires.